Special angles comprise trigonometric values that may be considered exactly. The special angle values can be calculated using trigonometric ratios. Specifically, the angles of 0, 30, 45, 60, 90 degrees are the special ones. Right angles include the measure as 90 degree. A right triangle consists of a Right Angle as one of its 3 angles. The right triangles consist of two special triangles which are 30-60-90 right triangle and 45-45-90 right triangle. Let us see about the trig ratio table.
Followings are the six trigonometric ratios
Sin θ = `(opposite)/("hypotenuse")`
Cos θ = `(adjacent)/("hypotenuse")`
Tan θ = `(opposite)/(adjacent)`
Cosec θ = `("hypotenuse")/(opposite)`
Sec θ = `("hypotenuse")/(adjacent)`
Cot θ = `(adjacent)/(opposite)`
Example
Evaluate 46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
46 x `1/2` + 16 x `1/2` - 8
23+ 8 -8
31 - 8 = 23
46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 23
Examples for Trig Ratio Table
Example 1 for trig ratio table
Find the adjacent side of the right angle triangle if angle θ is 60°, and the hypotenuse is 24.
Solution:
Cos θ =`(adjacent)/("hypotenuse")`
Given
Given θ is 60 degree
Hypotenuse side = 24
Assume adjacent side = x
Cos 600 = `x/24`
x= `24 xx cos 60^0`
x = `24xx(1/2)`
x = 24 x 0.5 {Value of cos 60 degree`1/2` }
x = 12
Therefore, the adjacent side of the right angle triangle = 12
Example 2 for trig ratio table
Evaluate 18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
18 x `1/2` + 16 x `1/2` - 8
9+ 8 -8
17 - 8 = 9
18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 9
Example 3 for trig ratio table
Evaluate 28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
28 x `1/2` + 16 x `1/2` - 8
14+ 8 -8
22 - 8 = 14
28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 14
Example 4 for trig ratio table
Evaluate 12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
Solution
12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
12 x 2 + 16 x 2- 8
24+ 32 -8
56 - 8 = 48
12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚ = 48
Example 5 for trig ratio table
Evaluate 7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
Solution
7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
7 x 2 + 16 x 2- 8
14+ 32 -8
46 - 8 = 38
7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚ = 38
Trig Ratio Table
Followings are the six trigonometric ratios
Sin θ = `(opposite)/("hypotenuse")`
Cos θ = `(adjacent)/("hypotenuse")`
Tan θ = `(opposite)/(adjacent)`
Cosec θ = `("hypotenuse")/(opposite)`
Sec θ = `("hypotenuse")/(adjacent)`
Cot θ = `(adjacent)/(opposite)`
Trig ratio table
Example
Evaluate 46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
46 x `1/2` + 16 x `1/2` - 8
23+ 8 -8
31 - 8 = 23
46 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 23
Examples for Trig Ratio Table
Example 1 for trig ratio table
Find the adjacent side of the right angle triangle if angle θ is 60°, and the hypotenuse is 24.
Solution:
Cos θ =`(adjacent)/("hypotenuse")`
Given
Given θ is 60 degree
Hypotenuse side = 24
Assume adjacent side = x
Cos 600 = `x/24`
x= `24 xx cos 60^0`
x = `24xx(1/2)`
x = 24 x 0.5 {Value of cos 60 degree`1/2` }
x = 12
Therefore, the adjacent side of the right angle triangle = 12
Example 2 for trig ratio table
Evaluate 18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
18 x `1/2` + 16 x `1/2` - 8
9+ 8 -8
17 - 8 = 9
18 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 9
Example 3 for trig ratio table
Evaluate 28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
Solution
28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚
28 x `1/2` + 16 x `1/2` - 8
14+ 8 -8
22 - 8 = 14
28 sin 30˚ + 16 cos 60˚ - 8 tan 45˚ = 14
Example 4 for trig ratio table
Evaluate 12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
Solution
12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
12 x 2 + 16 x 2- 8
24+ 32 -8
56 - 8 = 48
12 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚ = 48
Example 5 for trig ratio table
Evaluate 7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
Solution
7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚
7 x 2 + 16 x 2- 8
14+ 32 -8
46 - 8 = 38
7 cosec 30˚ + 16 sec 60˚ - 8 cot 45˚ = 38