Monday, May 27, 2013

Problems Involving Coins : 2

Introduction to problems involving coins

The purpose of the article is to help readers understand:
  • Represent the value of a given combination of coins.
  • Represent a word problem in to an equation.
  • How to solve an equation.
  • Various denominations (as per US Standards)
  • Solve problems consisting probability of coins.
  • Representation of worth of amount in various denominations.
Denominations of coins used in solving problems

S.NoCOINWorth (in Cents)
1Quarter25 cents
2Dime10 cents
3Nickel5 cents
4Cent1 cent





We will use the values in the above chart to solve problems involving coins


Examples of word problems involving coins


Ex 1: If a pencil costs 4 quarters and cost of an eraser is 5 dimes then how much will it cost (in dollars) to purchase 2 pencils and 1 eraser?

Sol:  Cost of 1 pencil = 4 quarters = 4 * 25 cents= 100 cents

Cost of an eraser = 5 dimes = 5*10 cents = 50 cents

Total cost of 2 pencils and 1 eraser (in cents) = 2*100 + 50 = 250 cents

Total cost of 2 pencils and 1 eraser (in dollars) = 250/100 = $2.5 ANSWER.

Ex 2: In a fundraiser program a total of $534 were collected in dimes and quarters. If the total number coins were 3000, then how many quarters were in the collection?

Sol: Suppose the number of dimes be equal to‘d’ and number of quarters be equal to ‘q’ in final collection.

So now we can write the following 2 equations:

1)      Equation for matching the total number of coins for both the denominations

d+q=3000 (Equation A)

2)      Equation for matching the total worth of coins and total sum collected (in cents)----10d+25q=534*100 (Equation B)

Representing in table form the problem can be summarized as:
Kind of coinNumber of coinsValue of each coin
(in cents)
Total value
 (in cents)
Dimesd10 cents10*d
Quartersq25 cents25*q
Total3000
53400



Solving the two equations:

Multiplying equation A by 2 and dividing equation B by 5 gives

2d+2q = 6000 (Equation C) and 2d+5q= 10680 (Equation D)

Now subtracting Equation C from Equation D gives 3q=4680 and hence q=1560

Putting value of q in Equation A fives value of d= 1440

Hence,

                Number of dimes = 1440 Answer

Number of quarters = 1560 Answer

Ex:3 In a charity box, there is a collection of nickels, dimes, and quarters which amount to $5.90. There are 3 times as many quarters as nickels, and 5 more dimes than nickels. How many coins of each kind are there?

Sol: Let n = the number of nickels.

Then 3n = the number of quarters.

(n + 5) = the number of dimes.
Kind of coinNumber of coinsValue of each coin
(in cents)
Total value
 (in cents)
Nickelsn55*n
Quarter3n2525*3n
Dimesn+51010*(n+5)


The total value of all the coins is 590 cents.

5n+25*3n+10*(n+5)=590

5n+75n+10n+50=590

90n=540

n = 6 hence ,

Number of Nickels= 6 Answer

Number of Quarter = 3*6 = 18 Answer   and

Number of Dimes = n+5 = 6+5 = 11 Answer


Problems Based on Probability involving Coins


Concept :  Probabilities are represented as numbers between 0 and 1 (both including) to reflect the chances of occurrence of an event. A probability of 1 represents that the event is certain and a probability of 0 represents that the event is impossible.

When a coin is tossed probability of occurrence of Head or Tail is equal and since sum of probabilities of an event is 1 (at max), we say that probability of occurrence of Head will be equal to probability of occurrence of Tail and both will b equal to half(0.5).

Possible outcomes useful when solving problems involving coins

1) Toss of one coin: T or H

2) Toss of 2 coins: TT, TH, HT, TT

3) Toss of 3 coins: TTT, TTH, THT, THH, HTT, HTH, HHT, HHH

And similarly total outcomes of toss of n coins will be equal to 2n.

Ex 4: A coin is tossed. What is the probability of getting a Head?

Solution : As also discussed in concept above, probability of occurrence of Head in a single toss in a fair coin will be equal to 0.5 OR 50% .

Ex 5: What is the probability of getting three tails, in each flip, if a coin is tossed three times?

Solution : Since the probability of getting tails is 0.5, the probability of three tails would be 0.5*0.5*0.5=0.125 or 12.5 %

No comments:

Post a Comment